Do Oscar Winners Live Longer than Less Successful Peers?
A Reanalysis of the Evidence

Marie-Pierre Sylvestre, MSc; Ella Huszti, MSc; and James A. Hanley, PhD

In an article published in Annals of Internal Medicine in 2001, Redelmeier and Singh reported that Academy Award–winning actors and actresses lived almost 4 years longer than their less successful peers. However, the statistical method used to derive this statistically significant difference gave winners an unfair advantage because it credited an Oscar winner’s years of life before winning toward survival subsequent to winning. When the authors of the current article reanalyzed the data using methods that avoided this “immortal time” bias, the survival advantage was closer to 1 year and was not statistically significant. The type of bias in Redelmeier and Singh’s study is not limited to longevity comparisons of persons who reach different ranks within their profession; it can, and often does, occur in nonexperimental studies of life- or time-extending benefits of medical interventions. The current authors suggest ways in which researchers and readers may avoid and recognize this bias.

For author affiliations, see end of text.

The large survival advantage—almost 4 years—for Academy Award–winning actors and actresses over their less successful peers (1) continues to receive attention. We point out that the statistical method used to derive the statistically significant survival difference gave the Oscar winners an unfair advantage. We suggest how readers might recognize and avoid similar biases in other research reports.

Redelmeier and Singh’s report (1) was based on 235 Oscar winners, 527 nominees (nonwinners), and 887 performers who were never nominated (controls). Controls were selected from performers who were the same sex and approximately the same age in years as the nominees and who performed in the movies for which the nominees were nominated. In the primary analysis, survival was measured from performers’ day of birth, but other definitions of “time zero” were also used. In all but 1 of the Kaplan–Meier, log-rank, and Cox proportional hazards analyses reported, each performer was classified as a winner or nonwinner from the outset. One reported analysis used winner as a time-dependent covariate to reflect the fact that all started out as nonwinners but that some changed status over time.

In Redelmeier and Singh’s more emphasized comparison, Kaplan–Meier curves showed that life expectancy was 3.9 years longer for winners. The Cox model, with winner as a fixed-in-time covariate, yielded mortality rate reductions ranging from 28% (no adjustment) to 23% (adjustment for 7 other covariates), all with 95% confidence limits more than 0%. The 1 reported set of analyses that treated each performer’s status as dynamic (time-dependent) yielded a mortality rate reduction of 20%; the lower limit of the CI was 0%, that is, the reduction was just significant at the conventional level ($P = 0.05$). Redelmeier and Singh’s abstract and their Figure focused on the 3.9-year life-expectancy advantage and the 28% mortality rate reduction for winners, which were obtained without adjustment and without taking into account that a performer’s status changed with time.

The analyses that classified those who ultimately won as winners from the outset gave them an inbuilt survival advantage by crediting the winner’s life-years before winning toward survival subsequent to winning. These “immortal” years (2, 3) were a requirement for membership in the winners’ group: Winners had to survive long enough to win—more than 79 years in the 2 most extreme cases (Figure). Performers who did not win had no minimum survival requirement, and some died before some winners had won, that is, before some “longevity contests” could begin. For example, 145 nonwinners had already died by age 65 years, that is, before 15 of the winners had won. These unfair pairings (for example, Richard Burton vs. George Burns) were implicitly included in the overall longevity contest between the 2 groups and contributed to the apparent survival advantage of the winners, even if winning brought no survival benefit.

To estimate the longevity benefits of winning an Oscar, the comparison should begin at the time that each performer first wins, and the “remaining longevity” contest should only include those alive at the same age as the winner was when he or she won. A winner may legitimately be included in comparisons (risk sets) before winning, but only as a nonwinner.

An analysis in which the status of a performer who won is treated as a winner throughout, even in risk sets before winning, produces an “immortal time” bias. As we illustrate in the Figure, a longevity that is measured from a time zero that precedes the performer’s Oscar win (for example, an individualized one, such as the day each per-
former’s first film was released, or a common one, such as each performer’s initial or 50th birthday, as used in Redelmeier and Singh’s analysis [1]) will necessarily contain some immortal time. No immortality guarantee exists for those who do not win. In a similar manner, the matching process, involving a performer who played opposite a nominee, ensured that a control was alive when a person who ultimately won was nominated but not necessarily when that winner won (the comparison of 235 winners vs. 527 other nominees did not involve a matching process).

The authors reported 1 analysis in which each performer’s status was updated in each risk set. In the Table, we compare the results from the types of analyses they used (original) with our reanalyses (new). Our methods are described more fully in the Appendix, available at www.annals.org. All of our analyses treat each performer’s status as dynamic. The database on which our analyses are based is available at www.annals.org. In our reanalyses, which take the immortal time as well as the covariates sex and year of birth into account, the point estimate of the actuarial advantage is approximately 1 year and is not statistically significantly different from 0 (the 95% CI is compatible with 0). The estimated percentage mortality rate reduction is also correspondingly smaller.

We directly estimated the magnitude of the immortal time bias (Appendix, available at www.annals.org). In our comparison of winners versus nominees, we estimated that not accounting for immortal time produced an artifactual longevity advantage of 0.8 year and a mortality rate ratio of 0.94. In the comparison of winners versus controls, not accounting for the immortal time—now more substantial—between the year of a winning performer’s first film and the year he or she first won produced an artificial longevity advantage of 1.7 years and a mortality rate ratio of 0.87.

In 1843, William Farr (5) described the statistical artifact created by classifying persons by their status at the end of follow-up and analyzing them as if they had been in these categories from the outset. He used as examples the greater longevity of persons who reached higher ranks within their professions (bishops vs. curates, judges vs. barristers, and generals vs. lieutenants). Despite textbook warnings (2, 6, 7), analyses overlooking this subtle bias are still common today.

In some longevity comparisons (1, 4, 8), the consequences of an incorrect conclusion are minor. In the evaluation of the time-extension benefits of therapy (3, 9, 10), the consequences are more serious. Therefore, how do we...
detect potential immortal time bias? We suggest that when reports compare 2 “groups,” such as winners versus nominees, one should carefully examine when and how persons enter a group. Does being in or moving to a group have a time-related requirement? Is the classification based on the status at time zero or later? If later, is this accounted for? Is the term *status*, which implies potential change, more appropriate than the term *group*, which implies, as in a clinical trial, that group membership is fixed from the outset? Is it sufficient to classify a person just once, or do we need to reclassify the “person-moments,” that is, the person at different times? Showing timelines, as in the Figure, may help. Of course, readers and commentators should be doubly cautious whenever they encounter statistical results that seem too extreme to be true.

From McGill University and Montréal General Hospital, Montréal, Québec, Canada.

Potential Financial Conflicts of Interest: None disclosed.

Corresponding Author: James A. Hanley, PhD, Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Avenue West, Montréal, Québec H3A 1A2, Canada; e-mail, james.hanley@mcgill.ca.

Current author addresses are available at www.annals.org.

References

Table. Original Analysis and Reanalyses of the Longevity Difference among Oscar Winners and Less Successful Performers

<table>
<thead>
<tr>
<th>Type of Analysis†</th>
<th>Status‡</th>
<th>Reduction in Mortality Rates (95% CI), %</th>
<th>Survival Advantage (95% CI), y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winners vs. Nominated</td>
<td>Winners vs. Controls</td>
<td>Winners vs. Nominated</td>
</tr>
<tr>
<td>Original data</td>
<td>PH 1</td>
<td>25 (5 to 41)</td>
<td>28 (10 to 42)</td>
</tr>
<tr>
<td></td>
<td>PH 2</td>
<td>Not reported</td>
<td>20 (0 to 35)</td>
</tr>
<tr>
<td></td>
<td>KM-LR 1</td>
<td>3.6§</td>
<td>3.9</td>
</tr>
<tr>
<td>New data</td>
<td>PH 1</td>
<td>23 (3 to 39)</td>
<td>26 (8 to 40)</td>
</tr>
<tr>
<td></td>
<td>PH 2</td>
<td>11 (~12 to 30)</td>
<td>17 (~2 to 33)</td>
</tr>
<tr>
<td></td>
<td>PH 2</td>
<td>18 (~4 to 35)</td>
<td>15 (~5 to 32)</td>
</tr>
<tr>
<td></td>
<td>KM-LR 1</td>
<td>3.3¶</td>
<td>3.7**</td>
</tr>
<tr>
<td></td>
<td>P-Y, actuarial</td>
<td>1.0 (~0.2 to 2.0)</td>
<td>0.7 (~0.3 to 1.6)</td>
</tr>
</tbody>
</table>

* KM-LR = Kaplan–Meier, log-rank; PH = Cox proportional hazards model; P-Y = performer-years analysis.
† The authors only had access to slightly updated data. See Appendix (available at www.annals.org) for discussion of analyses.
‡ 1 = those who ultimately won were treated as winners from the outset (static); 2 = those who ultimately won were treated as “not yet a winner” in risk sets before they won and as winners after they won (dynamic).
§ P = 0.013.
¶ P = 0.003.
†† P = 0.024.
** P = 0.006.
APPENDIX

Redelmeier and Singh’s report (1), published in May 2001, first compared 235 winners with 887 performers who were never nominated (controls). It also compared them with 527 other nominees (nonwinners).

Except for the last few years of awards, the 1649 performers were identified as winners, nonwinners, or controls “after the fact,” that is, in 2000. However, it is helpful to visualize this study as if it had been carried out in real time, with age- and year-specific risk sets built up over time. Seen from this vantage, the 3 groups continued to change membership over time. By the end (the year 2000), there were 1356 nominations, involving 762 unique performers. Of the 762, 235 won at least once, and the remaining 527 did not. Each year, the study would have identified 20 “same sex, nearest in age” performers who played opposite (opposites) the 20 nominees for that year. By the end, this process would generate a total of 1355 opposites. (In 1951, there was no female opposite for Katharine Hepburn). Some opposites had already been nominated or had possibly even won for performances in earlier films. Because performers were classified by their highest achievement, they already would have been upgraded before they were chosen as opposites. Other opposites were nominated for or won in a later film and would have been upgraded and have become part of the 762. The 887 unique opposites who, by the year 2000 or by the time they had died, had never been nominated were termed controls.

By the time we received the data file from Redelmeier and Singh (in November 2002), it had been updated to include another year (2001) of awards and deaths. This increased the number of performers from 1649 to 1670 and the number of deaths from 772 to 789. However, we did not have sufficient information to backdate the information in the received file to what it was at the time of the report.

In the file with 1670 performers, we identified a male performer (ID number 1075) who was born in 1953, died in 1994, and was first nominated in 1995. We also identified a female performer (ID number 1430) who was born 1934 and died in 2001; her first film was produced in 1952, her first nomination was in 1960, and her first win was in 1952. We excluded these 2 performers, leaving a total of 1668, comprising 238 winners (104 deceased), 528 nominees (223 deceased), and 902 controls (461 deceased).

When we performed the same analysis as the authors, on the slightly larger data set of 1668 performers, we obtained crude statistics that were similar to those in the original report. The new differences in outcomes among winners and nonwinners and among winners and controls were just slightly smaller than those of the original outcomes. For example (Table), the crude difference of life expectancy among winners and controls was 3.9 years in the original report; however, in the updated data report, it is 3.7 years. Whereas the reduction in the mortality rate ratio from the time-independent Cox model was 28% in the original report, it is 26% in the updated data report.

We began our reanalyses with the comparison of winners versus nonwinners. In the original report, winners’ life expectancy was 3.6 years longer (99 deaths in 235 persons; \(P = 0.013 \)) than that of nonwinners (221 deaths in 527 persons); the mortality rate reduction, estimated from a proportional hazards model in which status was static, was 25% (95% CI, 5% to 41%). In the updated data set, by the same analyses, we obtained an additional life expectancy of 3.3 years \((P = 0.024)\) and a mortality rate reduction of 23% \((CI, 3\% \text{ to } 39\%)\).

We reanalyzed the data on these 766 winners and nominees in 2 ways. First, we used a time-dependent Cox proportional hazards model, with age in years as the time axis (that is, risk sets constructed at each age in years at death) and sex and year of birth as covariates. Each performer’s status (already a winner or not) was updated at each successive risk set; those who had not yet been nominated by that age at death were excluded from that risk set. The estimated reduction in mortality rate was 18% \((CI, –4\% \text{ to } 35\% ; \ P = 0.104)\). We represented status as the number of years since winning, with nonwinners assigned zero years, but again, status was not statistically significant, even when the number of years was represented by just a linear term or by linear and quadratic terms.

Second, following guidance in an article by Efron (11), we treated the 21 546 postnomination performer-years as 21 546 separate observations. Winning status was at the time of the observation, and death in the performer-year was treated as a Bernoulli random variable, with logit link. With sex, age, and calendar year as covariates, the mortality rate reduction was 18% \((CI, –4\% \text{ to } 36\% ; \ P = 0.100)\).

From the fitted coefficients of this model, we calculated the expected total number of years alive in the period between winning and the end of follow-up (2001) in a hypothetical group of 238 performers of the same age in years, sex, and birth year as the 238 winning performers (Appendix Figure). We did this under 2 scenarios: 1) if the mortality rate in the 238 were the same as in those who did not win and 2) if the mortality rate were reduced by 18%, by the lower limit of –4% and by the upper limit of 36%. To illustrate this, we take the example of the remaining life expectancy, until the year 2001, for a man born in 1921 who won in 1960 at 39 years of age. From the actuarial life table constructed from the fitted regression coefficients, we calculated that his remaining life expectancy would be 33.3 years if winning did not reduce mortality rates; 34.4 years (a gain of 1.1 years) if it reduced them by 18%; 35.6 years (a gain of 2.3 years) if rates were reduced by 36% (95% upper limit); and 33.0 years (a loss of 0.3 year) if rates were increased by 4% (95% lower limit). The 238 winners would have lived an expected total of 5967.6 years if winning did not reduce mortality rates. The total would be 6194.2 years, 6451.3 years, and 5922.9 years if the mortality rate reductions were 18%, 36%, and –4%, respectively. Thus, the point estimate of the average longevity advantage was \((6194.2 – 5967.6)/238 = 1.0\) years \((CI, –0.2 \text{ to } 2.0\) years). In the actual data set, the observed years lived by the 238 winners in
Survival calculated actuarially from the coefficients of a logistic model (with age, sex, year, and status) fitted to the performer-years after each winner’s and each never-nominated performer’s first film. Status (already a winner and nonwinner), age, and year were updated yearly. Curves obtained by setting the mortality rate reduction to zero (dashed line), the point estimate of the reduction parameter (solid line), and the upper and lower 95% limits of this (dotted line) are shown. Calculation for each individual terminated at the year 2001, or age 110 years, whichever came first.

Wagoner and colleagues (14) explain why, when particular workers’ duration of exposure to vinyl chloride was classified according to what it was at the end of follow-up rather than dynamically, workers who had more than 15 years of exposure to vinyl chloride seemed to have lower mortality rates than those with fewer years of exposure. In a book by Breslow and Day (15), the authors revisit the analysis criticized by Wagoner and colleagues (14) and set out the correct way to make mortality-rate comparisons, that is, by using time-dependent cumulative exposure classifications.

In another relevant reference, Mantel and Byar (16) show how to form “Kaplan–Meier-like” life tables in which persons can move from one “exposure” status to another, for example, when patients move from “waiting-for-a-transplant” status to “post-transplant” status. If patients are inappropriately classified only by their final status (received transplant or not), the time they spend on the list waiting for a transplant is incorrectly credited to the transplant. Those patients who lived long enough received a transplant, but (because these were the earliest patients to receive transplants and transplantation techniques were still in their infancy) their post-transplantation survival was no better than that of those who were alive at the time of the transplantation but did not undergo the procedure.

Abel and Kruger (17) asked a question about baseball players similar to the one Redelmeier and Singh asked about performers. Abel and Kruger focused on players who were inducted into the Baseball Hall of Fame while they were still alive. In contrast to Redelmeier and Singh’s study, Abel and Kruger’s study “started the clock” at the time a player was inducted and used other players who were alive and who were same age as the inductee for comparison.

In a review article relevant for its discussion of bias, van Walraven and colleagues (18) gave the immortal time bias a slightly different name because they covered a slightly broader spectrum of situations. In their review, they surveyed articles that contained survival analysis and that may have been subject to the same immortal time bias considered in our analysis. They defined a “baseline immeasurable” time-dependent variable as one that could not be measured at baseline and that indicated what happened to patients during observation. They illustrated what oc-
curs if time-dependent variables are analyzed as fixed variables. They used the following helpful example (18):

Consider a hypothetical study determining prognosticators for patients who have a perforation of the sigmoid and under emergency hemicolectomy with colostomy. Patients who die in the first several months after the operation will never undergo closure of their colostomy. If this “baseline immeasurable time-dependent factor” (“Was colostomy closed?”) is analyzed in a survival analysis as a fixed variable, one would associate no colostomy closure with a worse survival. This association is erroneous, because death results in the colostomy not getting closed, rather than vice versa.

Van Walraven and colleagues found that “52 survival analyses were susceptible to time-dependent bias. In 35 studies, the bias affected a variable highlighted in the study abstract and correction of the bias could have qualitatively changed the study’s conclusion in over half of studies” (18). They concluded that “in medical journals, time-dependent bias is concerningly common and frequently affects key factors and the study’s conclusion” (18). Of interest, one of the analyses they “cleared” of possible time-dependent bias was Redelmeier and Singh’s (reference 32 in their survey).

Zhou and colleagues (19) use yet another name, “survival bias,” for what is essentially the same bias as the immortal time bias. (Walker [2] and Suissa [3] call it immortal time bias, and Glesby and Hoover [10] refer to it as “survivor treatment selection bias.”)

The abstract of the report by Zhou and colleagues (19) reads:

The authors compared five methods of studying survival bias associated with time-to-treatment initiation in a drug effectiveness study using medical administrative databases (1996–2002) from Quebec, Canada. The first two methods illustrated how survival bias could be introduced. Three additional methods were considered to control for this bias. Methods were compared in the context of evaluating statins for secondary prevention in elderly patients post-acute myocardial infarction who initiated statins within 90 days after discharge and those who did not. Method 1 that classified patients into users and nonusers at discharge resulted in an overestimation of the benefit (38% relative risk reduction at 1 year). In method 2, following users from the time of the first prescription and nonusers from a randomly selected time between 0 and 90 days attenuated the effect toward the null (10% relative risk reduction). Method 3 controlled for survival bias by following patients from the end of the 90-day time window; however, it suffered a major loss of statistical efficiency and precision. Method 4 matched prescription time distribution between users and nonusers at cohort entry. Method 5 used a time-dependent variable for treatment initiation. Methods 4 and 5 better controlled for survival bias and yielded similar results, suggesting a 20% risk reduction of recurrent myocardial infarction or death events.