Biostat 202: Opportunities and Challenges of “Big Data”:

Machine Learning 1:
Introduction & Regression

Aaron Wolfe Scheffler
Division of Biostatistics
Department of Epidemiology and Biostatistics
• **Goal**: Use machine learning algorithms for the purpose of *prediction* or *identifying patterns* in data

• **Case study**: dataset from a heart disease study, want to predict systolic blood pressure

[Image: Algorithm(s)]

- Prediction
- Dimension Reduction
- Clustering

= INFORMATION?

Pop quiz: Do machine learning/data mining techniques generate information?
Overview of machine learning (ML) lectures

• ML Lecture 1: Introduction to ML and supervised learning [regression]
 • Machine learning/data mining “definition”
 • Structured vs unstructured data
 • Supervised vs unsupervised machine learning
 • Linear regression
 • Validation

• ML Lecture 2: Supervised learning [classification]
 • Introduction to classification/evaluating classifiers
 • Validation continued
 • Logistic regression

• ML Lecture 3: Supervised learning, continued [classification]
 • Classification, continued: K nearest neighbors, decision trees, support vector machines, neural networks
 • Cross validation
 • Combining models: boosting, bagging, deep learning

• ML Lecture 4: Unsupervised learning [clustering/dimension reduction]
 • Clustering
 • Data reduction and PCA

• Orange throughout
Overview of this lecture

- Machine learning/data mining “definition”
- Structured vs unstructured data
- Supervised vs unsupervised machine learning
- Linear regression
- Validation (central to evaluating predictions)
Pop quiz: name that data!

- Blood glucose levels
- MRI/X-ray image
- Census data
- Physician notes
- Electronic medical records
Pop quiz: name that data!

- Blood glucose levels (structured)
- MRI/X-ray image (unstructured)
- Census data (structured)
- Physician notes (unstructured)
- Electronic medical records (both!)
Supervised vs unsupervised

Machine Learning

Supervised
- Regression (continuous outcome)
- Classification (categorical outcome)

Unsupervised
- Clustering (grouping observations)
- Data Reduction (transforming variables)
Fitting linear regression

\[y = ax + c \]

Where:
- \(a \) is the intercept.
- \(x \) is the independent variable (Age).
- \(y \) is the dependent variable (SysBP).
- \(c \) is the slope.
- \(l \) is the age at which the systemic blood pressure is 120 mmHg.
Model selection

• Want to find “true” predictive patterns in the data

• Want to avoid overfitting spurious detail – do not confuse noise for signal

• Solution – independent validation – reserve some data that has not been used in model fitting for the purpose of model evaluation and comparison.
Simulation of overfitting
Evaluation metrics for continuous predictions

• Linear correlation\(^2\) (r\(^2\)) – square of correlation coefficient between the observed target values and predicted target values

• Mean absolute error (MAE) -- the average absolute deviation between observed target values and predicted target values
Case study – Heart data

• Data:
 • n = 303
 • 14 attributes

• Target:
 • SysBp: systolic blood pressure

Predictors:
• Age: age (years)
• Sex: gender
• ChestPain: chest pain type
• Chol: cholesterol
• Fbs: fasting blood sugar >120 mg/dL
• restecg: resting electrocardiographic results
• MaxHR: maximum heart rate achieved
• ExAng: exercise induced angina
• Oldpeak: ST depression induced by exercise
• Slope: slope of peak exercise ST segment
• Ca: # of major vessels colored by fluoroscopy
• Thal: Thallium stress test
• AHD: diagnosis of heart disease (1 = yes, 0 = no)

Goal: Predict systolic blood pressure using multiple linear regression.
Review of this lecture

• Machine learning/data mining “definition”
• Structured vs unstructured data
• Supervised vs unsupervised machine learning
• Regression (supervised)
• Validation (central to evaluating predictions)
Thursday’s Lecture

• Introduction to classification
• Evaluation metrics for binary/flag predictions
• Validation and testing, continued
• Logistic regression