Functional Form: *Modeling Continuous Predictors*
Greenland, 1995
Altman and Royston, 2006

Lee Example

- Cohort of community-dwelling elders
- Predictors: age, co-morbidities, functional status: > 48 predictors
- Follow-up: mortality over 4 years
- Logistic regression model
- Age is a continuous variable

Summary Statistics

```
summary age, detail

age at time of 1998 interview

-------------------------------------------------------------
Percentiles Smallest
1% 51 50
5% 53 50
10% 55 50
25% 59 50
50% 66
Largest
75% 75 101
90% 82 101
95% 85 102
99% 92 103
Obs 11701
Sum of Wgt. 11701
Mean 67.22169
Largest
Std. Dev. 10.10853
Variance 102.1825
Skewness 0.4472938
Kurtosis 2.458463
```

Distribution of Ages

- Looking for outliers
- Look to see where most values are 90% of ages 53 and 85
- **DONT CARE IF THEIR NORMALLY DIST doesn’t matter**
- **It does’t.**
Modeling Challenge

Levels of Complexity

• age less than <65
• age 50-60, 60-70,70-80, 80-90,90+
• age as a “linear term”
• age + age^2
• other transformation (e.g. log)
• smoothing

Age Cut at 65

Logistic regression

Number of obs = 11701
LR chi2(1) = 592.71
Prob > chi2 = 0.0000
Log likelihood = -3910.362
Pseudo R2 = 0.0704

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|------------|-----------|------|-------|----------------------|
| over65 | 4.829268 | 0.3501685 | 21.72| 0.000 | 4.189489 5.566749 |
Odds Ratios

<table>
<thead>
<tr>
<th>Age 1</th>
<th>Age 2</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>66</td>
<td>4.8</td>
</tr>
<tr>
<td>71</td>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>81</td>
<td>1</td>
</tr>
</tbody>
</table>

Two Fits

[Graph showing probability of dying by 2002 across different ages in 1998]
How to Choose Cutpoint

- Strongly discourage making binary variable
- Lose a lot of information
- Cutpoint can be important choice
 - data: no unambiguous choice
 - avoid choosing “most significant” cutpoint

More Levels

- Cut age at quartiles: 25, 50, 75
 ages 59, 66, 75
- Use as a 4-level ordinal categorical variable
- Why use trend test?
Age by Quartile

```
.xi: logistic died i.age4
i.age4 _Iage4_1-4 (naturally coded; _Iage4_1 omitted)

Logistic regression                              Number of obs   =      11701
LR chi2(3)                                      =     949.71
Prob > chi2                                     =     0.0000
Log likelihood = -3731.8609                      Pseudo R2       =     0.1129

------------------------------------------------------------------------------
died | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     _Iage4_2 |   2.299158   .2939617     6.51   0.000     1.789523     2.95393
     _Iage4_3 |   3.842798   .4605231    11.23   0.000     3.038359    4.860222
     _Iage4_4 |   12.90059   1.454704    22.68   0.000      10.3425    16.09137
------------------------------------------------------------------------------
```

Learn anything about shape?

11

Interpretation

- OR is 12.9 comparing 4th quartile to first often need that 1 number
- Common summary for continuous especially in NEJM
- Quartile can be very specific to your data
Odds Ratios

<table>
<thead>
<tr>
<th>Age 1</th>
<th>Age 2</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>66</td>
<td>1.68</td>
</tr>
<tr>
<td>71</td>
<td>79</td>
<td>3.34</td>
</tr>
<tr>
<td>79</td>
<td>81</td>
<td>1</td>
</tr>
</tbody>
</table>

Issues
Binary and Categorical

- **Con:**
 - potentially biased
 - subtle choices
 - residual confounding

- **Pro**
 - very simple to understand
 - easy to “act” on cutpoints
Continuous Predictor

```
. logistic died age

Logistic regression                               Number of obs   =      11701
LR chi2(1)      =    1147.48
Prob > chi2     =     0.0000
Log likelihood = -3632.9744                       Pseudo R2       =     0.1364

------------------------------------------------------------------------------
died | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
age |   1.103388   .0034619    31.36   0.000     1.096623    1.110194
------------------------------------------------------------------------------
```

Interpretation?
Scale is huge issue here

Changing Scale

```
lincom 5*age
   ( 1)  5 age = 0

|        | Odds Ratio | Std. Err. |    z  | P>|z| |      [95% Conf. Interval]      |
|--------|------------|-----------|-------|------|-------------------------------|
|        |            |           |       |      |                               |
| (1)    | 1.635463   | .0256563  | 31.36 | 0.000| 1.585942 1.686529             |

lincom 10*age
   ( 1)  10 age = 0

|        | Odds Ratio | Std. Err. |    z  | P>|z| |      [95% Conf. Interval]      |
|--------|------------|-----------|-------|------|-------------------------------|
|        |            |           |       |      |                               |
| (1)    | 2.674738   | .08392    | 31.36 | 0.000| 2.515213 2.84438             |
```
Induced Odds Ratios

<table>
<thead>
<tr>
<th>Age 1</th>
<th>Age 2</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>64</td>
<td>1.48</td>
</tr>
<tr>
<td>64</td>
<td>66</td>
<td>1.22</td>
</tr>
<tr>
<td>71</td>
<td>79</td>
<td>2.2</td>
</tr>
<tr>
<td>79</td>
<td>81</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Linear v. Decade Fit

![Graph showing probability of dying by 2002 with age (years) in 1998 as the x-axis and probability as the y-axis. The graph compares continuous fit and decade fit.]
Linear Fit

- Can give good easy predictions
- Requires only single df: parsimonious
- Avoids overfitting!!
 not big concern in this data
- Bias/variance tradeoff
 may give better predictor for very old
- Single parameter output
 every 10 year increases odds 2.67

Does the Model Fit

- Maybe the very simple model is missing a pattern
- Multiple categories don’t have to give monotone risk
- One way to check: squared term
 squared terms have problems
Quadratic Fit

```
. logistic died age age2

Logistic regression                               Number of obs   =      11701
LR chi2(2)      =    1151.82
Prob > chi2     =     0.0000
Log likelihood = -3630.8075                       Pseudo R2       =     0.1369
------------------------------------------------------------------------------
died | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
age |   1.016908   .0397754     0.43   0.668     .9418631    1.097932
age2 |   1.000557   .0002666     2.09   0.037     1.000034    1.001079
------------------------------------------------------------------------------
```

Squared term “adds” to the model $p < 0.05$

Difference in Fits

```
less than 5% of data is over 90
```
Linear v. Quadratic Fit

<table>
<thead>
<tr>
<th>Age 1</th>
<th>Age 2</th>
<th>OR Linear</th>
<th>OR Quad</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>64</td>
<td>1.48</td>
<td>1.41</td>
</tr>
<tr>
<td>64</td>
<td>66</td>
<td>1.22</td>
<td>1.2</td>
</tr>
<tr>
<td>71</td>
<td>79</td>
<td>2.2</td>
<td>2.23</td>
</tr>
<tr>
<td>79</td>
<td>81</td>
<td>1.22</td>
<td>1.24</td>
</tr>
</tbody>
</table>

Squared Terms

- Very prone to outliers
 outliers become magnified
 very non-robust models
 can affect fit far from outlying values

- Statistical v. practical significance in model improvement
Log transformation

- Does not add degrees of freedom per se
- But can handle “non-linear” patterns
- Produces a useful interpretation
- Interpretation in terms of % increase in predictor
- Particularly helpful when measurement is unfamiliar

Results of Log Fit

. logistic died lage

Logistic regression Number of obs = 11701
LR chi2(1) = 1132.03
Prob > chi2 = 0.0000
Log likelihood = -3640.7019 Pseudo R2 = 0.1346
--
died | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
lage | 1166.966 270.697 30.44 0.000 740.6419 1838.69
--
Interpretation problematic
Results of Log Fit

. lincom 0.095*lage
(1) .095 lage = 0

| died | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------|--------------|-----------|------|------|----------------------|
| (1) | 1.956008 | .0431042 | 30.44| 0.000| 1.873324 2.042341 |

10% increase in age
same as multiplying age by 1.1
same as log(1.1) = 0.095 increase in log age

10% increase in age => HR 1.96

Log v. Linear Fit

<table>
<thead>
<tr>
<th>Age 1</th>
<th>Age 2</th>
<th>OR Log</th>
<th>OR Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>64</td>
<td>1.58</td>
<td>1.48</td>
</tr>
<tr>
<td>64</td>
<td>66</td>
<td>1.24</td>
<td>1.22</td>
</tr>
<tr>
<td>71</td>
<td>79</td>
<td>2.12</td>
<td>2.2</td>
</tr>
<tr>
<td>79</td>
<td>81</td>
<td>1.19</td>
<td>1.22</td>
</tr>
</tbody>
</table>
Consider log transform

- Log likelihood reveals no improvement in fit
- In addition, interpretation not helpful
- Sometimes hear “twice your age”
- Generally talk about being 1, 5, etc. years older
- Additive scale more natural
Splines

- A tool for producing smooth functions
- Very amenable to regression models
- Can help in describing complex shape while adjusting for other variables
- Similar across regression models
Heuristic

- Approximate complex function with
- Multiple simple functions
- Simplest example: linear spline
- Suppose use simple lines to approximate effect of age

Linear Spline

Linear between “x” connected at “x”
Knots

- “x” are called knots
 control how much shape can take
- Where to put knots?
- How many to put down?
- First, not a big effect
- Later can have big effect

of Knots

- Controls how eccentric curve can be
- DF = # Knots - 1
- Too many knots: overfitting noisy curve
- Too few: bias
- Bias/variance trade off
- 3-5 knots is plenty
Advantage Over Cutpoint

- Get much more information for df
- Placement of points not as critical
- Extremely flexible methods

Cubic Splines

- Type of spline functions
- Fits cubic polynomial between knots
 more flexible than a line
- Local function: not susceptible to outliers
- Often need to constrain tails
- Produces nice, smooth looking functions
Cubic v. Linear Spline

Stata

. mkspline cube_age = age, cubic nknots(3) displayknots

| knot1 knot2 knot3
-------------+---------------------------------
age | 55 66 82

. summ cube_age*

Variable	Obs	Mean	Std. Dev.	Min	Max
cube_age1 | 11701 | 67.22169 | 10.10853 | 50 | 103 |
cube_age2 | 11701 | 5.493749 | 7.357163 | 0 | 43.18518 |
. logistic died cube_age*

Logistic regression
Number of obs = 11701
LR chi2(2) = 1149.94
Prob > chi2 = 0.0000
Log likelihood = -3631.7479
Pseudo R2 = 0.1367

--
died | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
cube_age1 | 1.084836 .0120655 7.32 0.000 1.061444 1.108743
cube_age2 | 1.019988 .0128014 1.58 0.115 .9952037 1.045389
--

coefficient not interpretable
extract prediction
predict out_cubic

Spline Fit

Log Odds of Dying by 2002

Age (Years) in 1998

Linear Fit Cubic Spline Fit
How to test splines

flexible test for non-linear effects

- Fit spline model
 \[\text{logistic died cube_age1 cube_age2} \]

- Store results
 \[\text{est store splineresults} \]

- Fit model with linear effect
 \[\text{logistic died age} \]

- Apply likelihood ratio test
 \[\text{lrtest splineresults} \]

- LR test works because spline model always nested

How to test splines

simpler alternative for cubic splines

- Fit spline model
 \[\text{logistic died cube_age1 cube_age2} \]

- Note, “first” term is the linear effect
 \[\text{first term: cube_age1} \]

- Subsequent terms allow for non-linearity
 \[\text{here cubic there is only cube_age2} \]

- Test that subsequent terms 0
 \[\text{test cube_age2 = 0} \]
Two Tests

Likelihood Ratio Test

```
. lrtest splineresults
```

Likelihood-ratio test LR chi2(1) = 2.45
(Assumption: . nested in splineresults) Prob > chi2 = 0.1173

Wald Test

```
. test cube_age2=0
  ( 1) [died]cube_age2 = 0
  
  chi2(  1) =    2.49
  Prob > chi2 =    0.1148
```

Adjusted Splines

- Predicted outcome (prob, mean) by cts predictor
- All other variables “held constant”
- Race adjusted mortality: requires we specify racial composition of ref. population
- Requires that we margin race out of predictions
- According to mix in reference population
Race in Sample

<table>
<thead>
<tr>
<th>race/ethnicity</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>white, non-hisp</td>
<td>9,467</td>
<td>80.99</td>
<td>80.99</td>
</tr>
<tr>
<td>black, non-hisp</td>
<td>1,225</td>
<td>10.48</td>
<td>91.47</td>
</tr>
<tr>
<td>other, non-hisp</td>
<td>225</td>
<td>1.92</td>
<td>93.40</td>
</tr>
<tr>
<td>hisp</td>
<td>772</td>
<td>6.60</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Total | 11,689 | 100.00 |

I set reference population to resemble this: 81% white, 10% black, 2% other, 6% latino

Choice is arbitrary -- could have chose race mix for those under 65. Or the pop of California

Adjusted Model

. logistic died cube_age* i.raceeth

Logistic regression Number of obs = 11689
LR chi2(5) = 1165.06
Prob > chi2 = 0.0000
Log likelihood = -3618.6447 Pseudo R2 = 0.1387
--
| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----------|------------|-----------|-------|--------|----------------------|
| cube_age1 | 1.086678 | .0121674 | 7.42 | 0.000 | 1.06309 1.110789 |
| cube_age2 | 1.018119 | .0128472 | 1.42 | 0.155 | .9932481 1.043613 |
| raceeth | | | | | |
| 2 | 1.416758 | .1341638 | 3.68 | 0.000 | 1.176762 1.7057 |
| 3 | .9241177 | .22599 | -0.32 | 0.747 | .5722275 1.492402 |
| 4 | .9216928 | .1313255 | -0.57 | 0.567 | .6971151 1.218619 |
| _cons | .0003029 | .0002135 | -11.49| 0.000 | .0000761 .0012061 |
--
Key Code

```stata
gen adjlogodds = _b[_cons] + _b[cube_age1]*cube_age1 + _b[cube_age2]*cube_age2 + _b[1.raceeth]*0.80 _b[2.raceeth]*0.10 + _b[3.raceeth]*0.02 + _b[3.raceeth]*0.07
Calculates Logs Odds for the Reference Population

gen adjprob = exp( adjlogodds )/(1+ exp( adjlogodds ))
Converts to a Predicted Probability
```

Crude v. Adjusted

Indistinguishable

![Graph showing Probability of Dying by 2002 versus Age (Years) in 1998 for Crude and Adjusted for Race comparisons. The graphs are overlapping, indicating indistinguishable results.](image)
Cutpoint Approach

- Binary cutpoint approach always inferior. *Can always do better*
- Multiple cutpoints: better
- Dilemma: flexibility v. degrees of freedom
- Discontinuous: difficult for statisticians
- Groups: appeals to clinicians
- Choice of cutpoint: difficult and important
- Residual confounding is an issue

Transformations:

Polynomial

- Two df but only moderate flexibility
- Very susceptible to outliers
- Outlier can affect curve far away
- Mathematically complex: need to graph
- Statistical v. practical significance
Transformations:
Log Transformation

- Pulls in outliers
- Can produce useful interpretation especially for exotic assays
- Mathematically complex
- Don’t need to graph
- Can’t handle negative values
- No easy test for linear v. log

Linear Fit

- Parsimonious
- No worry about overfitting optimizing bias/variance tradeoff
- Often “good enough” especially to get rid of confounding
- Need to be careful about the scale
- Usually produces good interpretation in the eye of the beholder
Spline: Pros

- Flexible method
- Knot placement not critical
- Can be fit in any regression model
- Allows for check on linear fit
- Potential rich information especially for degrees of freedom spent

Spline: Cons

- Knot number is important issue
- Too many knots can lead to overfitting could use cross-validation to choose
- Can only be conveyed in a plot difficult when adjusting other variables
- Useful when predictor is of HIGH interest
Balance

- overfitting (-)
- residual confounding (-)
- flexibility (+)
- interpretation (+)

Purpose of regression very important